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We consider the problem of synchronizing a general complex network by means of the on-off coupling
strategy; in this case, the on-off time scale is varied from a very small to a very large value. In particular, we
find that when the time scale is comparable to that of node dynamics, synchronization can also be achieved and
greatly optimized for the upper bound of the stability region which nearly disappears, and the synchronization
speed is accelerated a lot, independent of network topologies. Our study indicates that the time scale for
network variation is of crucial importance for network dynamics and synchronization under the comparable
time scale which is much more advantageous over other time scales. Both analysis and experiments confirm the
conclusions.
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Network-based approaches have attracted a lot of interests
and have proven to be prominent candidates to describe so-
phisticated collaborative dynamics in many fields �1,2�. So
far, the dynamics of complex network has been extensively
investigated, with special emphasis on network synchroniza-
tion and the interplay between the complexity in the overall
topology and the local properties of the coupled oscillators
�3,4�.

However, the majority of works in this regard has focused
on the synchronization of static network, whose coupling
configuration in the network is time invariant, contrasting to
the reality such as in biological, epidemiological, and social
networks that the topologies can also evolve with agent dy-
namics as time goes by. Only recently, the case of time-
varying networks has been taken into account �5–10�, among
which most of the researches are prone to the fast switching
case; that is, the time scale of the variation in networks is
much shorter than that of the oscillator dynamics. However,
systems under different time scales of network variation may
exhibit very different synchronous behaviors, i.e., the role of
time scales for network synchronization could be of crucial
importance. In particular, when the time scale is comparable
to that of node dynamics, this situation, indeed, can be con-
sidered as a good model, such as for synaptic plasticity in
neuronal networks �11�, social or financial market adaptation
dynamics �12�, or mutation processes in biological systems
�13�, whose network evolution takes place over characteristic
time scales that commensurate with those of the node dy-
namics. In these situations, the study of the time scale com-
petition between local dynamics and network variation is
thus evidently important, which has yet escaped from atten-
tion and is the focus of this Rapid Communication.

In this work, we consider the synchronization problem in
on-off complex networks with the on-off time scale being
varied from a very small to a very large value compared to
that of the associated coupled node dynamics. In the study,
we find that when the on-off time scale is very small, the
synchronization stability can be predicted by the static time-
average coupling. As the on-off time scale is increased to the

order comparable to the node dynamics, several interesting
features are identified, among which the most exciting find-
ing is that one of the traditional bound for synchronization
due to short-wavelength bifurcations �SWBs� �14� nearly dis-
appears, showing great advantage for the large-scale network
fast synchronization. As the on-off time scale comes to the
large limit, the synchronous behavior of the network can be
explicitly explained in terms of Lyapunov exponents �LEs�.

We consider a network of N dynamics units that interact
with each other through connections with on-off couplings.
For the convenience of investigation, the on-off coupling is
uniform for all existed connections, since in this case we can
use master stability function �MSF� rigorously to access the
stability of synchronous states �4�. Thus, the topology of the
studied network is then altered between the original graph
and the isolated ensemble.

Based on these assumptions, the dynamics of each node
can be described in terms of the following equations:

ẋi = F�xi� − ��t��
j=1

N

gijh�x j�, i = 1,2, . . . ,N . �1�

Here x�Rm is the m-dimensional vector describing the state
of the node, F�x� :Rm→Rm governs the local dynamics of
the nodes, h�x� :Rm→Rm is a vectorial output function, ��t�
is the on-off coupling strength, and g= �gij� is the coupling
matrix for the original network with zero row sum, i.e.,
� j=1

N gij =0, ∀ i.
To be specific ��t�, we need to consider a concrete

dynamical system associated to each node. In the
following, without lack of generality, we choose Rössler
oscillators, whose state dynamics is described by
ẋ=−y−z ; ẏ=x+ay ; ż=b+z�x−c� with x= �x ,y ,z�. Pa-
rameters are used for chaotic behavior a=b=0.2, c=7.
To evaluate the time scale for the node dynamics, we calcu-
lated the average interpeak interval and obtained the typical
dynamical time which is of order 1 s �in this case
Ttypical�5.89 s for x component�, which will be considered
when we choose the on-off period T. Specifically speaking,
for the duration nT� t� �n+��T, the network is switched on
and ��t�=�; for the other time �n+��T� t� �n+1�T,
n=0,1 ,2 , . . ., the network is switched off and ��t�=0. Here,*Corresponding author; hongbinh@seu.edu.cn
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� is called the on-off rate in the range of 0–1, while �=1, the
study is then recovered to the continuous case.

In this situation, the synchronous state is an invariant
manifold, i.e., xi=xs , ∀ i with ẋs=F�xs�. Now let us focus on
the stability of the synchronized state, we perturb the state of
each node around the synchronous states xi�t�=x�t�+�xi�t�
and expand Eq. �1� in the Taylor series of first order. Then
the deviations �xi�t�=xi�t�−x�t� satisfy the equations
�ẋi=JF�xs��xi−��t�� jgijJh�xs��x j, where J denotes the
Jacobian operator. Following the procedure of Pecora and
Carroll �4�, the linear stability of the synchronous state is
determined by the above variational equations, which can be
diagonalized into N blocks of the form,

ẏk = �JF�xs� − ��t��kJh�xs��yk, �2�

where yk represents different modes of perturbation
from the synchronous state, and �k’s are the eigenvalues of
G, k=1, . . . ,N. To study synchronization properties with re-
spect to different topologies, the variational equation should
be computed as a function of a generic �complex� eigenvalue
�+ i�. This leads to the definition of the following equation:

ẏ = �JF�xs� − �̄�t��� + i��Jh�xs��y , �3�

where �̄�t�=��t� /� is the normalized on-off coupling and we
call the above equation as the coupling-dependent master
stability equation �CMSE�. The MSF then can be obtained
by studying the largest Lyapunov exponent of the CMSE
as a function of � and �, i.e., �max��+ i��
=limt→	

1
t ln�y�t� /y�0��. The last piece in the analysis for a

given network is to study the sign of the �max at the points
�+ i�=�
k for the transverse modes k=2, . . . ,N. Only when
all the transverse modes located in the negative region of the
MSF, the synchronous state then becomes stable.

We first study the behavior of the system under the con-
straint of the small on-off time scale. Here, we choose

Jh = �1 0 0

0 0 0

0 0 0
	

for the inner coupling. For the sake of simplicity, we con-
sider the MSF as a function of � and on-off rate �, omitting
�. This is allowed when G has only real eigenvalues. Figure
1�a� reports the result for T=0.1 s, which is much more
smaller than the typical dynamical time of nodes and can be
considered as fast switching cases. We see that the stable
region of the synchronous state is bounded by two hyperboli-
clike critical lines. The behavior can be well understood ac-
cording to previous studies �6� by the spirit of the time av-
erage of the coupling matrix G�t�, which can be stated that if
the network of oscillators synchronizes for the static time

average of the topology defined as Ḡ= 1
T
t

t+TG���d� then the
network will synchronize with time-varying topology G�t� if
the time average is achieved sufficiently fast. Similarly, we
can take the on-off coupling into account of the time-average
coupling for the MSF. For this type MSF for the x-coupled
Rössler, the stable region is a two-threshold region, i.e.,
�1����2 for the continuous coupling. For on-off coupling,
the time-average coupling defined by �̄= 1

T
t
t+T�̄�t��d�=��

should also admit the above relation �1��̄��2. We verified
the relationship by plotting the critical boundaries since they
satisfy � jc� jc=� j , j=1,2 and found that they were in good
agreement �see Fig. 1�a��. However, the situation is changed
and becomes a little more complicated that we cannot under-
stand from the viewpoint of time-average coupling any more
when the time scale for the on-off coupling increases, as we
will see later.

Now we come to the intermediate time scale for the on-
off coupling that is the same order as the time scale of the
node dynamics. As the time scale for the on-off coupling
increases step by step from T=0.1 s, we observed that the
hyperbolic boundaries no longer hold and gradually become
parallel to each other for large �, and the stable region is
enlarged much more than before. Figure 1�b� reports the
typical case for T=3 s. As the time scale of the on-off cou-
pling increases further, from about T=4 s, another stable
region emerges that is also parallel to the abscissa �see Fig.
1�c��.

The feature we are primarily interested in under the inter-
mediate time scale, as we can see from Figs. 1�b� and 1�c�, is
that the traditional upper bound nearly disappears for a con-
siderable range of �, which indicates that there is a transition
from type III to type II MSF �2�. Type II MSF means a single
threshold being expected and no size limits for large network
synchronization, while for type III two bounds exist to be
obstacles in synchronizing large-scale networks and much
attempt hitherto have been made to enhance network syn-
chronizability �e.g., review in �15��. Another important issue
in network synchronization is the synchronization speed v
�16,17�, i.e., how fast can networked oscillators achieve syn-
chrony to an expected precision. The speed is defined in
terms of the synchronization error of networks �sync by
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FIG. 1. �Color online� Contour plot of master stability function
for x on-off coupled Rössler oscillators as a function of � and
on-off rate � for different on-off period T. �a� T=0.1 s for small
time scale, �b� T=3 s, and �c� T=6 s for intermediate time scale;
�d� T=60 s for large time scale. The red dashed lines in �a� and �d�
are fitted results. Note two thresholds ��1 ,�2� for synchronization
stability of the continuous coupling �corresponding to �=1� are
about �0.14 and 4.48�.
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�sync�t�=�sync�0�e−vt. Our previous study showed that v is
closely related to the largest Lyapunov exponent correspond-
ing to the least stable transverse mode in Eq. �2�; that is, v
�−max��max��
k��, k=2, . . . ,N. The interesting phenom-
enon under this time scale is that the speed of the network
synchronization can be accelerated a lot since for some � all
the transverse modes can be placed in the region correspond-
ing large negative �max �see, e.g., the red dashed line indi-
cated by the arrow for �=0.45, v=−�max�0.8 in Fig. 1�b��
and thus converge to zero exponentially nearly at the same
rate. In fact, in this situation the speed is almost the same for
different networks independent of its structures as long as the
coupling strength is strong enough.

To identify this interesting synchronous behavior on real
physical systems, we conducted an electronic circuit com-
posed of two coupled Rössler oscillators to examine the phe-
nomena. The on-off coupling is produced by a square-wave
generator and added to the system via bilateral switches. The
circuit runs in the realm of a few kHz. Specifically, both time
scales for the oscillators and for the on-off coupling are
about 1 /2500=410−4 �s�, corresponding to the case of
Fig. 1�c�. Figure 2 illustrates some typical regions of the
circuit, from which we can observe that the synchronous
region is roughly the same to that of the stability analysis
�see Fig. 1�c��. Besides, the asynchronous and blowout be-
haviors are also identified. Notice that due to the disparity of
elements of the two oscillators, we say that synchronization
happens if the difference between the variable voltages tends
to a small range around zero. More details of the experiment
will be given elsewhere.

In fact, as the time scale of on-off coupling continually
increases, more stable regions appear parallel to the abscissa,
and the width of these regions inevitably becomes thinner
and thinner. Finally, as the time scale is large enough �about
20 s in this example�, all the long parallel stable regions
become too thin to be observed and vanish at last, converg-
ing to another region �Fig. 1�d� for T=60�. The behavior
under large time scale of on-off coupling actually can be
explained in terms of LEs. From the physical definition of
LE, the difference �X�0� of the two nearby trajectories will

diverge �or converge� as e�t. During period �T the coupling
is switched on, the difference evolves as e��t, where �� is
the largest transverse LE for the continuous coupling. In the
next step as the coupling is switched off, the difference
evolves as e�max

0 t for period �1−��T, where the �max
0 is the

largest LE for sole oscillator since the coupling is in
absence. The process repeats again and again, and the
resulting average difference then can be expressed by
�X�t�
�X�0� e����+�max

0 �1−���t; that is, the average LE for the large
time scale

�� = ��� + �max
0 �1 − �� . �4�

Whether stable synchronization can be obtained or not is
completely determined by the competition of duration of the
two processes. We verified the explanation by plotting the
critical boundary by letting ��=0 and found that they were
in good agreement. It is worth noting that the argument
seems universal for this kind of coupling scheme regardless
of the choice of T, but our results show that it works only at
the large time scale. This is due to the fact that the LE is the
long-time average rate of divergence �or convergence� of two
neighboring trajectories in the phase space, and it succeeds
only in those cases when the dynamics process is long
enough to ensure its working context.

As an application of the problem studied above,
we consider an ecological system, the foodweb
model �18�, with some practical considerations. The
individual dynamics is ruled by F�x�= �x− 0.2xy

1+0.05x ,−y
+ 0.2xy

1+0.05x −yz ,−10�z−0.006�+yz�T, with

Jh = �0 0 0

0 1 0

0 0 1
	 .

The model describes a standard three level vertical food
chain, where the vegetation x is consumed by herbivores y,
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FIG. 2. �Color online� Plot of experimental results for two bidi-
rectional on-off coupled Rössler circuits showing different behav-
iors in the parameter space. The blank, red �gray�, and black regions
correspond to synchronous, asynchronous, and blowout behaviors,
respectively. Due to the experimental limitation of the apparatus,
the coupling strength is limited up to �=10 �corresponding to
�=20 in Fig. 1�c��.
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FIG. 3. �Color online� The plot shows the time evolution of the
synchronization error ��t� exponentially decays and the inset illus-
trates time series for some populations of the top predators for the
parameter T=1, �=0.1, �=100. Here, year can be regarded as the
time unit. The model exhibits a rhythm with a period of about 6
year. The result means intensive interaction �coupling� among com-
munities in animals’ active season for just few months can synchro-
nize very large spatially coupled zones.
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which in turn are preyed on by the top predators z. The
model was motivated by the fact that in many ecological
systems, the frequency of a population remains relatively
constant �the “4- and 10-year cycle” of wildlife are often
found� over time although there are erratic changes in abun-
dance, such as the most celebrated Canadian hare-lynx cycle,
which follow a tight rhythm with a period of 10 years �19�.
Here, we illustrate our argument by direct simulation of a
nearest-neighbor-coupled ring with on-off coupling, in which
the on-off coupling can be accounted for the seasonality. For
example, many species �such as guns, zebras, and flamingoes
in Africa� migrate for food or mating in the dry season,
which can be regarded as strong interaction. In contrast,
some animals �such as some bears and snakes� may hibernate
as winter comes and thus the interaction among communities
ceases until the next spring. It is important to notice that in
this case, both the time scales for the population
dynamics and for the on-off coupling are of the same order
�1 year�. We defined the synchronization error
��t�= 1

N�i=1
N ��xi− x̄�+ �yi− ȳ�+ �zi− z̄�� with x̄= 1

N�i=1
N xi, ȳ

= 1
N�i=1

N yi, and z̄= 1
N�i=1

N zi. Figure 3 reports the result for 50
coupled patches for T=1 year, �=0.1, from which we can
see that all communities evolve into a common synchronous

state exponentially in the course of time. It should be noted
that if we try to synchronize the above system with the tra-
ditional continuous coupling �i.e., �=1�, there will be a size
upper limit �Nmax�14 in this example� �14�, above which no
synchronous state can be obtained whatever manipulating the
coupling strength.

In conclusion, we have systematically studied the syn-
chronous behaviors of on-off complex networks, showing
that the role of the time scale for network variation is of
critical importance for network dynamics. Especially when
the time scale of on-off coupling is comparable to that of
associated node dynamics, the stable region is dramatically
enlarged and the speed of synchronization is accelerated con-
siderably. Although the study is a simplification for more
general time-varying cases, our results indicate that among
different time scales of network variation for network syn-
chronization, the intermediate time scale may exhibit great
advantages over other time scales. We believe our research
will provide fresh insight into many collective phenomena in
nature and also hints for engineering design.

It is a pleasure to thank Dr. G. X. Qi for technical com-
ments on the manuscript.
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